Login
Help

ARTICLE

Submit your Data

  1. Pub 'PMID:29431097'

Title

An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time.

Authors

Razy-Krajka F, Gravez B, Kaplan N, Racioppi C, Wang W, Christiaen L

Journal

Elife 2018; 7():

PubMed ID

PMID:29431097

Abstract

In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, , and . Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors.

Data related to this article

Fates affected

show results

Gene involved Fates

Cis-regulatory regions

2 results

RNA-Seq data

No result

Studied Transcriptome Experiment ID